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Summary

We solve a combinatorial problem which generalizes
the 'probleme du scrutin' of D. Andre. In a particular
case, this result may be interpreted as a quasi-order defined
on the /'-partitions of an integer. We indicate the relation
of these quasi-orderings to certain coin tossing problems in
probability theory considered by the author in a previous
paper.

Notations

We follow closely the notations and methods used by the author
in a previous paper ' On the lattices formed by the partitions of an
integer and their application to probability theory'[1].

1. Statement of Problem

Suppose that we are given k sets of balls, the /th set consisting
of balls (i = I, Corresponding to each set of balls we are
given an ordered set of r boxes, the r boxes corresponding to the jth
set of balls being numbered i-^, i^, ..., i^ (/ = 1, ..., k). We shall
suppose that a; > r for all i. Let further (k — 1) non-negative integers
Lj, La, ..., Lj;-! be given, satisfying the conditions

Ci + Li'^ fli+i i = 1, ..., k — I. (1)

We distribute each set of balls in the corresponding set of r boxes,
so that no box is empty and so that the following further condition is
satisfied:

If fi"), /a'" f,"' be the number of balls of the ith set in the
boxes ii, ii, respectively {i = 1, ..k),
then

.. + t<*K-i+L, > +

Y" +... + + +... +

(2)



:for i = I, ..k —

"We note that the last inequality of (2) is satisfied by virtue of (1). The z<"'s are all integral and greater
than or equal to uhity and +...+//*>= Oi for all i = k.

We shall state and prove Theorem 1 which gives us the total number of ways of distributing the balls in the
.Tjoxes under the above conditions.

Theorem 1.—The total number of ways of distributing the k sets of balls in the corresponding sets of boxes,

.satisfying the aforementioned conditions is,

^2) • • -3 ^]c)r,0 [^Ij . . ., Lu—i\

-M'here

(fll—l)(,_!) («2- {cih--1-^1+.. •+-£'t-l)(r+S-2)

(^1 — 1 + -t'l)(r-2) (<^2 — I)(r-1) • . • -I-L2+.. •+ A;-l)(r+;;-3)

(fll — 1 + rf i2)(r-3) («2 — 1 + L^[r-2) • • • («s--I-L3+.. •+ A-l)(r+;~4)

(a^ — I + Li + • • • + Lji--l)(>-7:) (<^2 —l+i2+ • • • +-t7c-l)(r-S+l) • • {Ok — l)(r-l)

{a, - 1)(„ = 'VI) Q.

(3)
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2. Some Properties of Certain Auxiliary Determinants

We shall consider some ' properties of' the determinants
(^i> ^2; •••> 3^n.d (flj, a!i}r,t which we define below,
to prove Theorem 1.

We denote by {a^, the determinant of the /cth order
obtained from, (3) by setting Lj_ = = ... = = 0; i.e.]

(Oi —l)(r-i) (^2 —l)(r) ... {clk —l)(r+A;-2)

(^1, a^, . . . , Oj;),, 0 =
(^1 l)(r-2) (fli l)(r-l) • {dk — l)(r+ft-3)

(^1 l)(r-t) (^2 l)(r-ft+l) • • • (flft —
We denote by (aj, a^, ..., a„\,t the determinant, given below, obtained
from ((7j, ^2, as)r,o by adding t to each of the subscripts in the first
row of (flj, (72)

(^I~0(rt<-1) (<^2~l)(r+() ••• (fl/j —l)(r+7;-|-j_2)

(^1. ^2' • • •> < —
(®l~l)(r-2) («2~l)(r-l) •

(fll —])(r-/;) (^2—l)(r-;£+i) •
We note the following properties of the determinants given in

(4) and (5) for /c > 2: if

> «2 > ••• > >'• + 1, (6)
then

—1 0^—1 Cj; —1

^ ^ (^1 ' ^2 ' •••' '̂ k')r, 0Qi >j72 (72 ^ =1

= ^2, . . . , 0- (7)
We note first that if (6) is not satisfied, (7) is still trivially valid,

since the summands reduce to zero. From (1), it is clear that in the
case £j = .., = = 0, (a^, ..., is non-zero,, if and only if,
Ci > 02 ^ ... > /•.-

We establish (7) for the case k = 3, the general result being similar.
Consider,

• («J> —l)(r+ft-3)

• (««;—l)(r-l)

ffi-1 ^2-1 «3-l
SEE

a{>a^' a^>a^ a.^>\

K' - {a' - 1),„ {a- -

(*^1 ~ l)(r-2) ifli —l)(r-7-l) {flz —l)(r)
- l)(r-3) («2' - l)(r-2) (^3' - Ocpl)

• (4)

(5)



172 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Summing over a^, we obtain (a^ —a^) determinants of the same form
as above, with the same 2nd and 3rd columns. Hence the result of
the summation over is

(fll —l)(r) —(^2' ~ l)(r) (^2' ~ l)(r) (^3' l)(rt-l)

(fiTl —l)(r-l) —(O2' —l)(r-l) («2'~l)(r-l) (fl3~l)(r)

(«1 —l)(r-2) —(^2'~l)(r-2) (®2 ~"l)(r-2) (^3 ~l)(r-l)

fl„—1 ^3 —1

S S

or,

fla-l "3-1

a,/>03' 03'>1

(fll — l)(r) (02' — l)(r) («3' — l)(r+l)

{(ll — l)(r-l) {(^2 l)(r-l) (^3 l)(r)

— Ij(r-2) (^2 l)(r-2) (^3 ~ l)(r-l)

Continuing next the summation over az, and then over 03' (using the
same method), we have easily,

«!—1 "3—1
2j 2 Ij {^1 j ^2' ^2}r,0 — ^2' ®3)r+l, 0-

fill'>02' 02,'>03' 03'> I

We have, in fact, the much stronger, result, which can be established
similarly:

fli-1 02-I flfc-i-1 "ft-l
2 2 ... 2 2 «,

= (flj, . . ., flj:)r+l,c (8)
We now prove the identity:

2 2 ... 2 {cii 1)(8) = (Pu ^2> • • ^t)2,s> (^)

where

, («i'- l)(o , ,

Let us consider (9) when k = 2.

Obviously,

2 2 (fli' — l)(s) = 2 {(fli—l)(s+i) —(^2'—1)(8+])}
Oa'=l 02'=!

(^1 ^)(s-h.) (^2 D(s+2)
(®1 ~ 1)(0) (<^2 ~ 1)

= (oi, 02)2,3 •

TJips (9) is proved when h = 2.
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Now

a,—1 a.,—1 aj —1
Z Z 2

ai'>a3 03'>1

= 11 U {(<^1 ~ l)(s+l) (^2 ~ l)(s+l)}
a^'>a3 a3'>l

02—1 03—1 02—I "3—1
= («!—l)(s+i) Z Z I — U Z (02 —l)(s+i)

= (^1 ~ l)(s+l) fe) ^^3)2,0 (<^2; '̂ 3)2,s+l>

since (9) was proved for k = 2.

Noting that:

(^1 ~ l)(s+l) (^2! ^^3)2,0 (^2) ^3)2, s+1

(fll~~l)(s+l) fe~l)(s+2) (<^3~^)(s+3)

0 (^Z2~"l)(l) (®3~1)(2) +

0 (fl2~l)(0j («3~1)(1)

[on suitably bordering the determinants]

= {a-i, 02, 03)2, sj

we have proved (9) when k = 3..

By induction, (9) can be shown valid for all k.

Other properties of the determinants (a^, Oa, ..., flsX, f can be
derived similarly.

3. Proof of Theorem 1

We shall prove Theorem 1 in the case Li = Lj = • • • = A;-i= 0;
sincb the general case is analogous. In this case, Theorem 1 was
stated in [1] and proved for = 2 using a geometrical interpretation.
We shall use the same method and interpretation in what follows.

In oi-der to prove Theorem 1, when = Lj = ... = it-i = 0,
we first remark that the case A: = 1 is immediate. The case k = 2

was proved in [1]. Let us consider the case k = 3.

Case k = 3.—When r = I, the proof is evident. Let us consider
the case r = 2. Given that a particle starting' from the origin has
reached the point P {a^, a,,, 2) in two steps under
condition (2), the number of ways in which this could have happened
is evidently

0 (a2~l){s+2) (^3~l)(s+3)

1 (fl2^1)(l) (^3^1)(2)

0 (a2-l)(o) («3-l)(i)



174 JOURNAL OF THfi INDIAN SOCIETY OF AGRICULTURAL STATISTICS

1 a^—l fls —1
S S 1 = ci^, ^3)2,1

a^^a<, ao>i7n

by identity (9) where we take j = 0. Thus the case /c = 3, )• = 2 is
proved.

But we know that if the particle reached F {a-^, a^, in 3 steps,
the number of ways in which this could happen is

flj-l flg-l "3-1
S 2^ 2 (Pi, CI2, 03)2,0'

a^>a2 a^>a3 'J3>1

Using (7) when r = 2, k = 3, the summation in the last line equals
(«!, aa, 03)3,0 so that the case k = 3, ;• = 3 is proved.

Proceeding recursively, using the same argument and equation (7)
for a suitable value of r, the case k = 3 can be proved for a general r.

The proof of Theorem 1 for a general k is evident in the special
case £1 = ... = L^-i = 0, making a double induction on k and r.
Let us suppose that the special case of Theorem 1 is proved for all
values up to and including k for all r. We consider now the case for
k + 1 sets of balls containing Gj, Aj. • • Os+i balls. For k + 1 sets,
when r = 1, the proof is evident. Using equation (9) when j = 0,
the theorem is proved for A: + 1 sets of balls and r = 2. The geo
metrical interpretation and equation (7) permit us to conclude the
validity of the theorem for /c + 1 sets of balls and a general r. Hence
the proof of Theorem 1 is complete, when = ... = = 0. •

We now remark that equations similar to (7); (8) and (9) can be
established for the determinant denoted by a^, [Aj
Li-j], where L^, ...,Ls_i are non-negative integers. The modifica
tions to be made in the suramations and geometrical interpretation
are trivial.. Hence Theorem 1 is proved in the general case as well.

4. Interpretations of Theorem 1

(a) Let us consider the case /c = 2 of Theorem 1,' when
= n (say) and = L say. Equation (1) is trivially satisfied and equa
tions (2) can be written:

(10)

rt + L >
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where

= j = i^2),

+ ... + + ... + //2) = n,
and

are /--partitions ofn in the notation of [1], When L> 0, the relations
(10) represent a quasi-order defined on the /--partitions of n, since they
are obviously reflexive and transitive. In analogy with [1], we call
this quasi-order the relation of ' £-domination ' , or we 'say that
the /--partition of n dominates (L) the /--partition
of n ^ Most of the ideas expressed for the case L = 0
in [1] generalise for the case I, > 0 as well.

When L = 0, the relations (10) represent a partial order defined
on the /--partitions of n [1]. If in the relations (10) the inequality sign
were strict [except for the last line of (10)] and L = 0, we would obtain
the relatioii of strict domination as opposed to that of domination.
These relations would correspond to the recurrent events of Feller for
coin-tossing in its simplest case (cf. [2]). A result similar to Theo
rem 1 can be obtained for strict dominations as well.

The case L < 0 is worthy of'note. The author has obtained
results similar to the cases L ^ 0, and a generalization of Theorem 1
where we now allow L^, .to take positive or negative integral
values. However the relations (10) when L > Q are not reflexive
though they continue to be transitive. {The relations (10') obtained
from (10) where we replace the > sign by a < sign and L < 0, would
kad us again to the same quasi-order as for the case L> Q. This

[3]} situation which would arise in all partial'or quasi-orders
{b) Let k = 2, a]_ = m, = n, ~ L. The relations (2) would

then enable us to see whether an r-partition of mdomiiates (L) an
/•-partition of n. Let us supp.ose that we number the r-parti-
tions of m using the symbols p^, and similarly number
the/--partitions of/7 pi,p2,---,p'̂ n~iy Let lu denote the number of
/--partitions in the set p '̂, p '̂, . dominated (L) hyp.,, i = i,

i)- The sum (m, «),'• = +... _j_ jg evidently
independent of the numbering chosen for the /--partitions of mand n.
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and depends only on m, n, L, r. We have as a coroUa'i-y of Theorem 1
that,

{m, ri)r = (m — l)(r-i) (« - l)(r-l)

-{m + L - {n-L - I),,,.

Let us further set n = m + L. With a change of notation, we obtain
the useful result:

(;?, n + k)K = (/j - l)(,-i, {n + k - l)(,-i)

— (« + A: — l)(r-2) (« — l)(r)- (11)

(c) The modifications required to prove results similar to Theo
rem 1 when we define an /--partition of n as a set of where > 0 for
i = l, ...,r so that

h = n

are obvious. The author is investigating the case where the relation
(10) is replacedby the following:—

+ k >

+ 4 > V''+ ^2'̂ '

+ . . . + + Ir-l > . . . +

5. ApPUCATION TO THE THEORY OF PROBABILITY

Let us suppose that we are given two coins 1, 2 with probabilities
p2 of obtaining heads and, consequently the probabihties q^, of

obtaining tails where = 1 —Pi, i = 1, 2. We shall assume in what
follows' that Pi + P2> 1.

Let us consider the game G„ {n > 2] played with the following
rules:

(1) The first trial is made with coin 1.

(2) For n> 1, the /jth trial is made with coin 1 or coin 2, accord
ing as the result of the (« —. 1)'' trial was a tail or head.

(3) We stop the series of trials at that trial where for the first time
the accumulated number of heads obtained (with both coins) is greater
than the accumulated number of tails obtained by exactly n.
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When n —2, this problem was considered and solved in [1],
The methods and results obtained in [1] can be generalized easily to
obtain the solution of the game G„ for 3. Using the notations of
[1] where base sequences and Sr are defined, we state the following
Theorem 2:

Theorem 2.—The number of base sequences of G„ (n^ 3) in
Sr {r > 1) containing (n + 2r -\-2t —1) terms is

(/• + 1, n-\-r —2)("-®
= (« + /• — 3)((_i) — (« + r — 3)(«_2) /•(,)

where

i = 1, 1. .

As an illustration of Theorem 2, we give the base sequences of in
Si below. They are

Bj

Bz

B,

n=4

r=l

Bx contains 6 trials and B^ consist of 8 trials each. B^ represents
a domination (1) of the 1-partition of 3 by the 1-partftion of 2. B^,
B^ correspond to the fact that the partition (1, 1) of 2 dominates (1)

the partitions (1, 2), (2, 1) of 3. The sloping lines\ and /, which indi
cate the positions where the subsidiary sequences Xq , qX could be
introduced, demonstrate the possible 1-dominations of the partitions
of 3 by those of 2.

Following [1] we thus obtain the identity

g qi'PiPr'-' 1

X [(« —2) /•(,) + /•(«+!)] {pi = 1,
for integral 3, where p^•\- qi = 1, i = 1, 2 ard />! + /7a > 1.

12
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. . We finaily state that Theorem 1 can' be applied to other kinds of
coin tossing experiments with a siniilaf stopping-¥ule.-' The game Gj,
which reqiiiires a special consideration, and other-similar coin tossing
experiments "will be discussed in detail in a further-paper.
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