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SUMMARY

We solve a combinatorial problem which ‘generalizes
the ‘probléme du scrutin’ of D. André. In a particular
case, this result may be interpreted as a quasi-order defined
on the r-partitions of an integer. We indicate the relation

. of these quasi-orderings to certain coin tossing problems in
probability theory considered by the author in a previous
paper.

NOTATIONS

We follow closely the notations and methods used by .the author
in a previous paper ‘On the lattices formed by the partitions of an
integer and their application to probability theory ’[1].

1. STATEMENT OF PROBLEM

Suppose that we are given k sets of balls, the ith set consisting
of g, balls i =1, ..., k). Corresponding to each set of balls we are
given an ordered set of r boxes, the r boxes corresponding to the ith
set of balls. being numbered 7, 7, ..., I, (=1, ..., k). We shall
suppose that a; > r for all . Let further (k- — 1) non-riegative integers
L, Ly, ..., L[, be given; satisfying the conditions

a+Lizayn i=1, ..., k—1. - ) 1)
We distribute each set of balls in the corresponding set of r boxes,

so that no box is empty and so that the following further condition is
satisfied :

If 49, 6,9, ..., 4% be the number of balls of the ith set in the
boxes iy, Iy, ..., i, respectively (I = 1, ..., k),
then

L L= ’1“*1’

tl(‘) + tzﬂ) "_}_ L‘_ > tl("rl) -+ t2“+1)

@

(%)+ .- rH)r_l_}_L t1(5+1)+t (4+1)+ L, 1(ﬂ~+1)
t}“’ 4.+ t.’m + L > 600 4 gD




for i=1,...,k—1.
“We note that the last inequalit}'/ of (2) is satisfied by virtue

~than or equal to unity and #‘ J- .

of (1). The #s are all integral and greater

AW =g, for all i=1,..., k.

We shall state and prove Theorem 1 which gives us the total number of ways of distributing the balls in the

“boxes under the above conditions.

Theorem 1—The total number of ways of distributing the k sets of balls in the corresponding sets of boxes,

_satisfying the aforementioned conditions is,

(@, @y .., o [Lyy Ly .. ., L) .
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(@ — 1 + L) (@ — Dy -
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2. SoME PROPERTIES OF CERTAIN AUXILIARY DETERMINANTS

We shall consider some ~ properties of ~ the determinants
(ay, ag, <. ., ar)0 and (ay, ay, ..., ay)r,: Which we define below,
to prove Theorem 1.

We denote by (ay, ay, ..., @), o the determinant of the kth order

obtained from.(3) by setting L; = L, = ... = Ly =0; ‘ie;
(@ — Do @ — Dy oo (@ — Diprpsy
. (ay — Dy (a5 — Do-n oo (@ — D43
(al’ 2 T ak)r, 0= . (4)
. (al - 1)(r—k) (az - 1)(r—k+1) cen (ak - 1)(:'—])

We denote by (ay, a,, ..., ar).,: the determinant, given below, obtained
from (@, a,,. ..., a), o by adding ¢ to each of the subscripts in the first
row of (aya,, ..., a),0; ie., ' : :
(@ =Dt @Dty - .- (@ —Drtrt-a
(@1—Dr- (@—De-p ... (ak—l)(r—l"k—:;)

(ap (12’ LN ak)r,t = : . b (5)

(@3 =1 (@@= D1t - -« (@D

We note the following properties of the determinants given in
(4) and (5) for k= 2: if

GZaz=...2ap=r 41, . ) (6)

then
a—1 a,—1 ap3—1 ap—1
pX 2 ... 2 (a),a, ..., ar's, o

a'>a) a'>a  ayy>ay a4y’ =1 .
= (ay, ay, ..., Ar)riz, o (M
We note first that if (6) is not satisfied, (7) is still trivially valid,’
since the summands reduce to zero. From (1), it is clear that in the
case LIy = ... =Ly =0, (ag, ..., @) is non-zero,. if and only if,
a Z a0, ... Za,= e - _ o
We establish (7) for the case k = 3, the general result being similar.
Consider, )
al gl a1 @' = Do @' — Doy (a5 — Dty
> 2 P (a)" — D2 (@)’ — D) (ag’ — 1)(r)

a/’>a, a,'>a a,'>1
o TR R ey — Di-ar (@' = Diay (a5 — D)
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Summing over a,’, we obtain (a; — a,’) determinants of the same form
as above, with the same 2nd and 3rd columns. Hence the result of
the summation over a," is

' (@ — D — @ — D (@ — D (@5" — Do 2
a,—1 a;—1 ) . ,
(a—Di-n — (@' =D (@' =D (@' =D
02'>a3, 031>1 , Y , .
(@—1)(r-) — (@' —1D-0 (a2 —D-2 (@' =D : .
or,
(@1 — D (@) — Dy (a5’ — Do+
a—1 az—1
N ’
2 @ — De-n (@ — De-n @' — D
a2'>a3l' a3’>1 , B
(@1 — D2 '(_az — De-o (@3" — D-v
Continuing next the summation over a,’, and then over a;’ (using the
same method), we have easily,
a,—1 a,—1 ag—1
2 2 i 2 (alla 02', a3l)r,0 = (alv das, a3)r+1.0'
a’>a)  ay>ay ay>
We have, in fact, the much stronger. result, which ¢an be established
similarly : ,
a;—1 a,—1 a,1—1  ap—1
2 2 [P 2 2 (al': veey al.:l)r,t
alr>a2/ a2I>aal akl—1>ak, akl__:l
= ((11, s ak)rﬂ,t‘ (8) ©
We now prove the identity:
a—1 a—1  ap—1 ‘
2 e )-—l' (all - 1)(3) = (ab a2> L] ak)z,s’ (9)
a’'>a’ a'>a) af>1
where
) (all - 1)(5) = (a‘/—l)Ca'
Let us consider (9) when k = 2.
Obviously,
a;—1 a,—1 , a=—1 :
: 2 () — Dy = 12 {(@ =1 ety — (@' —Deqny}
a'>a’  af=l ay’ =1 - .
(@, — 1)(a+1) (@2 — Dtotay
(@a—1Dw @—-1 | <
= (4, az)a,;- _ . ‘:‘

Thus -(9) 1s proved wheﬁ k= 2.
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Now

aq—1 a,—1 a3—1
2 (@ —Dw

al, > ag' 02’ > a3’ aal >1

—1 a,—

= 2 2 {(a1 — Digtyy — , (@2’ — Dery}

ay >ay ay’>1

. ‘ay—1 ag—1 a,—-1 a3—1
=Dy 2 2 1— 2 2 (@'— 1)(s+1)
a’>ay ay'>1 ay)>ay ai'>1

= (a; — Dty @25 d3)a,0 — (42 aa)z,s+1,
since (9) was proved for k = 2.
Noting that:

(@1 — Dty (@5, ag)a,0 — (@a, @3)s, 511

(@1—Detn (a2'_'1)(s+2) (03_1)(s+3)- 0 (az_l)(s+2) (as_‘l)(s+3)
= 0 " (@—Du @1 [+]1 @Dy (a3—1)p

0 (a2— 1o (@—Dw | 10 (02"‘1)(0)- (as—Dw
[on suitably bordering the determinagtg] T o

= (als d2’ a3)2,ss
we have proved (9) when k = 3.
By induction, (9) can be shown valid for all k.

Other properties of the determinants (a, az, ...y dy),; canl be
derived similarly. ‘

3. PR(:)OVF OF THEOREM 1

We shall prove Theorem 1 in the case L, =L, = ... = L;,_,=0,
since the general case is analogous. In this case, Theorem 1 was
stated in [1] and proved for k = 2 using a geometrical interpretation,
We shall use the same method and interpretation in what follows.

In order to prove Theorem 1, when L; = L, = ... = L, = 0,
we first remark that the case k = 1 is immediate. The case k = 2
was proved in [1]. Let us consider the case k = 3.

Case k = 3.—When r = 1, the proof is evident. Let us consider
the case r = 2. Given that a particle starting” from the origin has
reached the point P (ay, @, a3) (a>> a,>> a;>> 2) in two steps under
condition (2), the number of ways in which this could have happened
is evidently
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a—1 a—1 az3—1

2 2 2 1 = (a5, ay, as)s,v

a>a, a>a; az>1

by identity (9) where we take s = 0. Thus thé case k = 3, r =2 is
proved.
But we know that if the particle reached P (ay, a,, a;) in 3 stepb,
the number of ways in which thlS could happen is
a—1 a,—1 a;—1

2 2 N (@, as, as)s, ¢

a;>ay a>az dy>1
Using (7) when r = 2, k = 3, the summation in the last line equals
(ay, as, a3)s,0 so that the case k. =3, r =3 is proved.
Proceeding recursively, using the same argument and equation (7)
for a suitable value of r, the case £k = 3 can be proved for a general r.

The proof of Theorem 1 for a general k is evident in the special
case L, = ... = L,; =0, making a double induction on k and r.
Let us suppose that the special case of Theorem 1 is proved for all
values up to and including k for all r. We consider now the case for
k 4+ 1 sets of balls containing ay, as, ..., @z balls. For k - 1 sets,
when » = 1, the proof is evident. Usmg equation (9) when s = 0,
the theorem ‘is proved for k + 1 sets of balls and r =2. The geo-
metrical interpretation and equation (7) permit us to conclude the
validity of the theorem for k& + 1 sets of balls and a general r. Hence
the proof of Theorem 1 is complete, when L, = ... =L, ; = 0. .

We now remark that equations similar to (7); (8) and (9) can be
established for the determinant denoted by (ay, @, . ., o [L1, Lg, - . .,
LY, where L,, ..., L, are non-negative integers. The modifica-
tions to be made in the summations and geometrical interpretation
are trivial. Hence Theorem 1 is proved in the general case as well.

4. INTERPRETATIONS OF THEOREM |

(a) Let us consider the case k = 2 of Theorem 1, when a; = a,
= n (say) and L, = L say. Equation (1) is trivially satisfied and equa-
tions (2) can be written:

' LD 4+ L>g,®

ACUNEPRIVNEY P AC IR ON
(10)

tl(l) + . _}_tr_l 1)+L t1(2) + . tr_l(ﬁ)
n+L>=n
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where A A
=21 G=1,...,r; Jj=12),
A T L TRy
and

(B, L), (1, L 1)

are r-partitions of » in the notation of [1]. When L > 0, the relations
(10) represent a quasi-order defined on the r-partitions of n, since they
are obviously reflexive and transitive. In analogy . with [1], we call
this quasi-order the relation of ¢ I-domination ’ , Or we say that
the r-partition of n (11, ..., V) dominates (L) the r-partition
of n (¢,®, ..., ). Most of the ideas expressed for the case L = 0
in [1] generalise for the case L > 0 as well. - :

When L = 0, the relations (10) represent a partial order defined
on the r-partitions of #n [1]. If in the relations (10) the inequality sign
were strict [except for the last line of (10)] and L = 0, we would obtain
the relation of strict domination as opposed to that of domination.
These relations would correspond to the recurrent events of Feller for
coin-tossing in its simplest case (cf. [2]). A result similar to Theo-
rem 1 can be obtained for strict dominations as well.

The case L < 0 is worthy of<hote. The author has obtained
results similar to the cases L > 0, and a generalization of Theorem 1
where we now allow L, ..., L, to take positive or negative integral
values. However the relations (10) when L > 0 are not reflexive
though they continue to be transitive. {The relations (10" obtained
from (10) where we replace the > sign by a <{sign and L < 0, would
lead us again to the same quasi-order as for the case I > 0. This
is a general situation which would arise in. all partial or quasi-orders

(31

(b) Let k =2, ay'=m, ay =n, L, = L. The relations (2) would
then enable us to see whether an r-partition of m domiaates (L) an

r-partition of n. Let us suppose that we number the (':7 -:11) r-parti-

tions of m using the- synibols D1s Doy - es p(,,_1 and similarly number

r—1
the r-partitions of n p,’, p,,. .., p'(,,__l . Let n; denote the number of
1
r-partitions in the set p’, p,’, ..., p'(,,_l) dominated (L) by p;, i = 1,
r—1

2 .. (’” ~ i) The sum (1" = m ..+ 1 s evidenly

rF— 1
independent of the numbering chosen for the r-partitions of m and n,
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and depends only on m, n, L, r. We have as a corolla?y .of Theorem 1
that, '

(m; n)rL= (’n - 1)(r—_’l) (I’Z - 1)(r'—l)
- (m "}_ L — 1)(,—2) (n — L — 1)(,).

Let us further set n = m + L. With a change of notation, we obtain
the useful result:

(1 + K, = (1 — Dmp (0 + k — Dy
—(m+k— 12 (1 — 1. (11)

(¢) The modifications required to prove results similar to Theo-

rem 1 when we define an r-partition of n as a set of ¢, where ¢, > 0 for

i=1,...,r so that
L+ ...+t =mn

are obvious. The author is investigating the case where the 1e1at10n
(10) is replaced by the following:—

1(1) —{N 11

>1,®
LD 5D L L > 52 4 @

tl(l) + t2(1) 4.+ tr—l(l) S - A AL B r—1(2)-
5. APPLICATION TO THE THEORY OF PROBABILITY V

Let us suppose that we are given two coins 1, 2 with probabilities
p1, Do Of obtaining heads and, consequently the probabilities ¢, g, of
obtaining tails where ¢; =1 — p;, i =1, 2. We shall assume in what
follows " that p; + p, > 1.

_ Let us consider the game G [n 2> 2] played with the following
rules a
(1) The first trial is made with coin l

(2) For n> 1, the nth trial is made with coin 1 or coin 2, ‘accord-
ing as the result of the (n — 1)* trial was a tail or head.

(3) We stop the series of trials at that trial where for the first time
the accumulated number of heads obtained (with both ¢oins) is greater
than the accumulated number of tails obtained by exactly n.

*
!
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- When »n =2, this problem was considered and solved in [1].
The methods and results obtained in [1] can be generalized easily to
obtain the solution of the game G, for n > 3. Using the notations of
[1] where base sequences and S, are defined, we state the followmgn
Theorem 2:

Theorem 2.—The number of base sequences of G, (n 3) in
S, (r = 1) containing (n + 2r + 2t — 2) terms is -

r+1, n+4r—2)3

=repM+r—3n —@+r— Dy rw

where '

t=1,...,r+ 1.
As an ﬂlustratlon of Theorem 2, we give the base sequences of G, in
Sy below. They are

« N
WA w4
Nk N/

B, contains 6 trials and B,, B, consist of 8 trials each. B, represents
a domination (I) of the l-partition of 3 by the l-partition of 2. B;,
Bj correspond to the fact that the partition (1, 1) of 2 dominates (1)

the partitions (1, 2), (2, 1) of 3. The sloping lines\ and /, which indi-
cate the positions where the subsidiary sequences X,, oX could be
introduced, demonstrate the poss1b1e 1-dominations of the partitions
of 3 by those of 2. .

Following ‘[1] we thus obtain the identity

¢i'pips™t 1
r=o (1 i1’1;2)"”"'1 n+r—2 tz (n+r— 2)(”

X [(m—2) ry + resn] (py 42) =1,
for integral n3>3, where p,+¢qi=1, i=1,2 ard p, + p, > 1.
12
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- We finally state that Theorem 1 cat-be-applied to other kinds of
coin ‘tossing experimerits with a similaf stoppmg ‘fiile:- The-game Gy,
‘which requires- @ - ‘special con51derat10n and. other ‘sitiilar com tossmg
experlments “will be discussed in detail in- a further paper - o
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